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Artificial Intelligence in Pathology: A Simple
and Practical Guide
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Abstract: Artificial intelligence (Al) is having an increasing impact on
the field of pathology, as computation techniques allow computers to
perform tasks previously performed by people. Here, we offer a simple
and practical guide to Al methods used in pathology, such as digital
image analysis, next-generation sequencing, and natural language
processing. We not only provide a comprehensive review, but also dis-
cuss relevant history and future directions of Al in pathology. We
additionally provide a short tabular dictionary of Al terminology which
will help practicing pathologists and researchers to understand this field.
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hile the role of artificial intelligence (Al) in pathology

has increased rapidly in the past several years, examples of
its use go back for many years. In the 1970s, using classic com-
puting principles, researchers designed a computing platform for
Al called expert systems. Some early examples of Al in medicine
were built on expert systems, which relied on handcrafted rule-
based algorithms. These translated into promising systems like
MYCIN, which could identify bacteria and guide therapy based
on clinical data,! and Pathology Expert Interpretative Reporting
System (PEIRS), an automated chemical pathology report
interpretation system.>2 The expert system’s handcrafted rules
required domain knowledge (ie, individual or group expertise in a
certain field) during design, and faced significant challenges for
tasks that required interpretations of sensory information, such as
images.

In the 1990s, cytopathology and hematopathology were
in the forefront of solving the issues with image processing.
These later systems were designed based on feature engineering
principles, which utilized domain knowledge in constructin%
algorithms to extract informative features from raw data.
PAPNET System, AutoPap 300 QC System, and later Thin-
Prep Imaging System were cell morphology image analysis
systems that received Food and Drug Administration (FDA)
approval for clinical use during this period.*® PAPNET pio-
neered the use of an artificial neural network, a form of
machine learning (ML), to supplement the algorithm design. A
major advance in computing, ML is a set of techniques to
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automatically create algorithms from data without reliance on
domain knowledge (Fig. 1). PAPNET and AutoPap systems
were designed as primary screening systems, while the Thin-
Prep system was designed to assist cytotechnologists in the
screening process by identifying cells of interest. In the early
2000s, semiautomated peripheral blood smear analysis, such as
Cellavision DM96, appeared on the market. Similar to the
cytology systems for the Pap test, the hematopathology sys-
tems aimed to assist laboratory technicians to identify and
classify cells; in this instance, white blood cells.

Most systems did not survive commercially to the present
day due to limitations of the earlier technologies and economic
factors. Some, such as the ThinPrep Imaging and Cellavision
systems have managed to be commercially viable on a large
scale into the present day.

Al, powered by the various methods described, will con-
tinue to rapidly evolve and can be expected to grow exponen-
tially in importance given its proven utility in numerous other
industries (eg, self-driving cars, amazon recommendation sys-
tems, etc.). Thus understanding Al in the context of pathology
is paramount to both academic researchers and practicing
pathologists. We will provide a practical global overview of Al
in pathology, in both clinical and relevant research settings.

COMPONENTS OF ARTIFICIAL INTELLIGENCE

ML is a subset of Al in which the creation of algorithms for
data analysis, previously a human performed task, is being per-
formed by computers. ML differs from classic computing in that
ML algorithms are used to create a model from training data
that can then be used to analyze new data sets (Fig. 1). Essen-
tially, ML algorithms “learn” from exposure to vast amounts of
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FIGURE 1. Comparison between classic computing and computing

with machine learning. Please see this image in color online.
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FIGURE 2. Workflow for 3 types of machine learning algorithms. A, A workflow for a supervised learning pipeline. A model is trained on a
set of labeled data and then evaluated on the testing data to determine the model’s predictive strength. A regression or classification
model can be trained by this pipeline. B, Semisupervised learning utilizes labeled and unlabeled data to generate a predictive model.
Through training a model on the labeled data and using it to generate labels for the unlabeled data, the model creates a new and larger
data set to train a final model on. C, Unsupervised learning pipelines are trained on unlabeled data. The pipelines can be trained for
clustering, anomaly detection, and dimensionality reduction. Please see this image in color online.

data, while classic computing projects the expert domain
knowledge onto a set of data.

The design phase of ML algorithms are frequently
referred to as “training” and the methodology of ML is
largely dominated by 3 main categories: supervised learning,
unsupervised learning, and semisupervised learning (Fig. 2).
Producing a useful model involves training and evaluating
steps and is done using data that can be divided into train-
ing, validation, and test data sets.

Supervised learning is based on training algorithms using
labeled and well-defined data sets to create a predictive model.
This approach is akin to having a “teacher” supervise the com-
puter algorithm to build an accurate model by providing a well-
annotated data set. For instance, if one wants to identify images
of cats versus dogs, supervised learning would use many thou-
sands of labeled cat images and dog images to train the computer
algorithm. Through establishing relationships and patterns
between the input data (known images of cats and dogs) and
ground truth output data (the category label of cat and dog), the
algorithm generates a predictive model. The strength of the
model is assessed with a validation data set (a new set of
unknown images), which includes input-output data point pairs
that were outside the original training data. The predicted
output value from the model is compared with the expected
output value to estimate the generalizability and strength of the
model. The generalizability of a satisfactory model is further
tested on an orthogonal test data set, preferably further sepa-
rated from the training and validation data. Supervised
learning is built for 2 major types of ML problems: classi-
fication and regression. Classification models are used to identify
which category an input belongs to (eg, adenocarcinoma verse
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squamous cell carcinoma).” Regression models are used to
determine what output value an input data value should be
assigned for continuous dependent variables (eg, predicting a
patient’s length of stay in a hospital).? Some examples of super-
vised learning algorithms are artificial neural networks, decision
trees, k-nearest neighbors, and linear regression. One common
aspect of supervised ML algorithms is that the accuracy and
generalizability of the model can be increased by training it with a
larger training data set. The number of data points necessary to
achieve a useful model depends on the type of ML algorithm
used, and type and quality of data analyzed. Image analysis
algorithms, for example, typically require many thousands of
labeled example images to train models to human levels
of expertise. This can be a barrier for training models being used
to recognize rare pathologies for which fewer than “many
thousands™ of cases may exist worldwide, let alone in a digitized
training data set.

Unsupervised learning, on the other hand, identifies pat-
terns in unlabeled input data. This has enabled researchers to
generate analytic models in cases where there is a lack of ground
truth. Essentially it is pattern recognition without regard to the
meaning behind the pattern. Unsupervised learning is most
commonly used for clustering data, anomaly detection, and
data dimensionality reduction, and is useful in exploring new
data sets. Unsupervised learning techniques such as cluster
analysis only describe the features and patterns of the data; this
is analogous to the identification of a new classification of a
tumor by noting it is sufficiently morphologically different from
other tumors.

Dimensionality reduction techniques, such as principle
component analysis, are techniques for simplifying a predictive
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TABLE 1. Terminology Central to Artificial Intelligence (Al) in

Pathology

Term

Definition

Artificial intelligence

Artificial neural
networks
Bayesian networks

Classification

Computer vision

Field of study that relates to the
development and ability of computer
systems to interpret information or
perform tasks that would otherwise
require human intelligence

A machine learning model inspired by
biological neural network

A machine learning model that updates the
probability for a classification as more
information becomes available

The identification of a category an input
belongs to (eg, adenocarcinoma verse
squamous cell carcinoma)

Field of science that involves the ability for
computers to identify and interpret
images and videos in the way that humans
interpret them

TABLE 1. (continued)

Term

Definition

Supervised learning

Support vector
machine

Systematized
nomenclature of
medicine

Transfer learning

Transfer learning

Unsupervised
learning

Category of machine learning in which the
algorithm is developed using labeled data.
The algorithm is then used to predict
future data outputs

A machine learning model that uses
hyperplane(s) to divide data points into
classes

A computer processable collection of
medical terms

A deep learning method that applies a
pretrained model on a different but
similar problem with limited training data

A machine learning technique that uses
previously gained knowledge and apply it
on a different but related problem

A machine learning method that takes
unlabeled input data to form and generate

Convolutional neural Type of machine learning algorithm that

network

Data augmentation

Decision trees

Deep learning

Digital pathology

Dimensionality
reduction
Domain knowledge

Ground truth

Machine learning

Narrow Al

Natural language
processing
Regression analysis

Segmentation

Semisupervised
learning

Strong Al

Structured query
language

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

integrates feature extraction with neural
network and is primarily used to analyze
image data

A collection of methods to increase the
amount of training data using only the
existing data by introducing
noninterfering variations (eg, flipping,
rotation, or resizing of digital images)

A machine learning model based on decision
tree

A machine learning method, usually a
variant of convolutional neural network
that uses a very complex and deep
networks to achieve a high predictive
performance

Subfield of pathology that involves the use of
computers to store pathologic data and aid
in the analysis of specimens

Techniques for simplifying a predictive
model to its most important inputs

Individual or group expertise in a certain
field

Ideal expected result used to train supervised
or semisupervised machine learning
algorithms

Field of science where computers are used to
develop and implement mathematical
models and algorithms to perform a task
without explicit instructions

Also known as weak Al, an implementation
of Al that can only perform a narrow sets
of tasks

Field of Al where computational methods are
used to interpret the human languages

A machine learning model that estimates the
relationship between input variables and
outputs

Typically used in the context of digital
image analysis. An image is “segmented”
into different components that are
meaningful

Category of machine learning that uses a
combination of labeled and unlabeled
data to develop the algorithm

An implementation of Al that can solve
general problems. A strong Al may be a
collection of narrow Als working together

A language designed to manage data in a
relational database

patterns

model to its most important inputs. Using one of these techni-
ques, one could take a set of all commonly ordered laboratory
tests and patient diagnoses and find the top laboratory tests
predictive of the presence or absence of a given disease. Then
one could use those specific tests with a supervised ML algo-
rithm to create a predictive model based on those tests. For
instance, while fasting glucose and hemoglobin A1C would
likely be found to be highly associated with having diabetes, the
2 values are highly correlated; if one has a hemoglobin A1C, a
fasting glucose value adds little to our predictive power. A well-
designed dimensionality reduction algorithm might then prefer
another laboratory test than fasting glucose that has less direct
correlation with hemoglobin A1C.

Semisupervised learning is frequently used in settings
where generating a large labeled data set is difficult, a fre-
quently occurring scenario in pathology Al application
development. Semisupervised learning is currently an evolving
field, but the overall goal is to incorporate unlabeled data into
the training process by unsupervised methods such as cluster-
ing or to use the partially trained model to “label” the data.’
An emerging topic within this field is multiple-instance learn-
ing, in which each of the training data points are separated
into bags of instances with one label. For the bag of instances,
the positive label applies to the bag when at least one of the
instances in the bag has a positive label and the negative label
applies when all the instances have negative labels.!? In this
manner, multiple-instance learning incorporates unlabeled
data and labeled to learn patterns and build models. Another
technique involves the clustering of unlabeled data with
labeled data based on image characteristics and then providing
the unlabeled data pseudo labels that will then be used for
training. As an extension of semisupervised learning, Self-
supervised learning is one of the newer techniques and the goal
is to learn generalizable and basic image context with unla-
beled data. This method generates a baseline model that can
be further specialized to tasks with a small amount of labeled
data. For the generation of this baseline model, pretext tasks
are used, such as randomly patching an image and training a
model to determine the location of the patches.!! This trains a
baseline model that gains a spatial understanding of the data.
The baseline model, with the initial values learned from the
pretext task, can be used for supervised learning as it has
shown to improve model accuracy with less labeled data.
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FIGURE 3. Comparison between feature engineering based dig-
ital image analysis and deep learning-based digital image analysis.
Please see this image in color online.

ML has existed since the late 1950s, and numerous
models have been created since then.!? Table 1 contains
descriptions of some widely used ML models.

IMAGE ANALYSIS AND MACHINE LEARNING

Digital image analysis, and the closely related idea of
computer vision, have previously been very difficult to perform

t"i TAN
#k‘. ?a

with Al Digital image analysis has benefited tremendously
from an increase in affordable computational power in recent
years, and from the development of improved ML algorithms
such as deep convolutional neural networks (CNNs). Digital
image analysis in its essence involves the computation of a very
large array of digits, a task perfectly suited for deep CNN as it
mimics biological visual systems.!? Before the introduction of
deep CNN, digital image analysis in pathology relied heavily on
domain knowledge of pathologists to create feature engineering
methods to come up with algorithms. Feature engineering is
divided into 2 phases; segmentation and feature extraction
(Fig. 3). In segmentation, the image is separated into “segments”
by meaningful categories. For example, a simple threshold
method can be used to parse out darker regions from lighter
regions. More sophisticated algorithms can use a combination
of color, texture, contrast, and other features to segment.
Image filters (eg, sharpen, edge detection, blur, etc.) can also be
mixed in. In feature extraction, the “segments” are extracted
and computationally measured. Figure 4 shows an example of
a cervical biopsy hematoxylin and eosin image being processed
by a feature engineering method. The goal of feature engi-
neering is to produce properly structured computable data for
classification. In this final step, an ML-based method is the
most popular approach. Any of the previously mentioned
techniques can be used.

FIGURE 4. Using traditional feature engineering technique to analyze cervical biopsies: A digital image from a cervical biopsy (A)
processed by a color deconvolution method that takes advantage of color contrast in H&E stain (B). C, A threshold method can be used

to segment or separate the nuclei from other cell features.
properties.
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D, The segmented nuclei can be further extracted for their numerical
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FIGURE 5. Three example workflows for an acute lymphoblastic lymphoma (ALL) classification pipeline. The InceptionV3, Inception-
ResNet2, and Xception architectures (visualized above using Netron) are applied to the ALL IDB2 data set of ALL and normal cells. The
training loss and accuracy plot displays the model loss over accuracy while getting trained over 100 epochs. In addition, the receiver
operating characteristic curves are displayed along with the corresponding area under the curves. The InceptionV3 achieved the highest
prediction accuracy on the test data. Please see this image in color online.

CNNs have revolutionized digital image analysis by
reducing the need for domain knowledge dependent feature
engineering, though domain knowledge is still required to
provide the labeled training data sets. Since 2012, most
successful algorithms from Large Scale Visual Recognition
Challenge (ILSVRC) were different architectures of CNNs.
Most of them shared a similar design that involved “con-
volving” the image layers using image filters to produce
feature signals to be processed by artificial neurons. Not
unlike biological neural networks, CNN can detect and
process sophisticated image features with the right number
of layers and complexity. As an extremely simplified example, the
successive layers of image processing can be said to mimic the
human visual cortex in which successive layers of convolutional
layers and neurons (V1, V2, V3, etc.) further abstract encoded
data from the raw visual input. V1, for instance, detects differ-
ences in contrast (edge detection), while V2 specializes in binoc-
ular disparities that help determine depth of field, and V3 uses
input from previous levels to recognize characteristics such as
color, spatial frequency and orientation, and simple geometric
shapes. Subsequent levels use condensed inputs from the previous
levels through max pooling layers to recognize complex features.
The final fully connected layer, consisting of artificial neurons,
can determine if the extracted features from previous layers are
sufficient to classify (eg, a certain Gleason Score) (Fig. 3). Some
deep CNN models can perform segmentation, feature extraction,
and classification all at once. The performance of a CNN rests on
the layer design, hyperparameter settings, and training data. The
training of a deep CNN can be extremely computationally
expensive but it can achieve an extremely high level of per-
formance (Fig. 5). Beyond that, recent advances are giving us a
way to visualize the previous deep learning “black box” (Fig. 6).
Such visualization techniques may allow us to use deep learning
algorithms as a computational method to gain reproducible
knowledge from the traditionally subjective morphologic fea-
tures, transforming the study of histology into a computational
discipline.

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

ARTIFICIAL INTELLIGENCE APPLICATION
DEVELOPMENT AND DEPLOYMENT

Al is a maturing technology. As such, publications tend to
be research and technology prototypes. Pioneering laboratories
may have to validate and deploy these technologies as a labo-
ratory-developed test for diagnostic purpose. Therefore, an
understanding of the tools/prototypes used in the development
of Al application development is essential. Appropriate vali-
dation guidelines are available from Centers for Medicare and
Medicaid Services (CMS) and the College of American Path-
ologists (CAP).!4!5 The advances we have made so far are for
narrow Al applications or applications that are only suited for a
limited set of tasks. Successful projects in the past (eg, ThinPrep
Imaging System) all tried to meet a specific need in the clinical
practice or research workflow.

A key requirement for developing generalizable ML-based
Al applications is high quality annotated data of sufficient
quantity. Having access to clinical pathology images accurately
annotated by practicing pathologists specific to an institutional
need is a luxury. Methods such as self-supervised learning, sem-
isupervised ML, data augmentation, and transfer learning can
provide some relief. For the researchers and developers who lack
access to large institutional data sets, there are publicly available
image repositories such as the Cancer Genome Atlas Program
(TCGA), Acute Lymphoblastic Leukemia Image Database for
Image Processing (ALL-IDB), and Breast Cancer Wisconsin
(Diagnostic) Data Set. The difficulty of procuring real medical
images in sufficient quantity and quality for ML research has
generated some interest in synthetic data. Other industries such as
nuclear energy, aviation, and autonomous vehicle researches all
have successfully adapted it to negate the danger of using real
data.!® As artificial data created from scratch, or generated using
data manipulation techniques, properly created synthetic data
can be used to for ML training without the burden of main-
taining patient confidentiality and data security.

Al applications can be developed from a wide array of
tools. ImagelJ, a portable application and its derivatives (eg, Fiji)
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FIGURE 6. Feature visualization using deep convolutional neural network. A, Activations visualized using UMAP to aggregate and cluster
similar activations for the InceptionV1 architecture. B, A class activation map of the InceptionV3 that depict the most important pixels and
areas on the image for generating the classification output. C, The layer wise output visualization of the InceptionV3 that portrays the
results of the intermediate layers of the convolutional neural network. Please see this image in color online.

are perhaps the best known digital image analysis tool in the field.
It is built specifically for biological image analysis problems and
supported by a large contributing community and numerous
plugins.!” Other comparable tools include CellProfiler, Bio-
ImageXD, Icy, iLastik, Vaa3D, and QuPath. Some of these
solutions (QuPath and ImageJ) offer capabilities to manipulate
whole slide images.!® One key disadvantage of most open-source
image analysis platforms is the lack of a complete set of tools to
complete the project from image segmentation to classification.
For example, ImageJ currently does not have a built-in classifier
and the end-user must provide their own or use a plugin.!” Newer
platforms such as QuPath has a similar approach.!® Vendor-
supported solutions often offer “the complete pipeline” in this
regard with an upfront cost. Examples of vendor-supported sol-
utions include Definiens tissue studio and Viziopharm histo-
pathology digital image analysis. Some solutions even require the
user to purchase vendor-specific hardware as the Ventana iScan
systems and the companion software. The latter example has an
extremely high upfront cost but offers vendor-supported, vali-
dated, and deployable solutions right out of the box.

Some of the tools for ML algorithm development do not
even require one to know how to code. Beginners can experi-
ment with ML algorithms without any prior experience in
programming by using a graphical user interface to construct
their own algorithms. Some can be downloaded onto a desktop
and run as a locally installed application (eg, Orange). Others
take the data from the user and perform the processing in the
cloud (eg, Datarobot). Most software packages are free to use
but some cloud-based solutions such as the DataRobot operates
using the “freemium” model.

390 | www.anatomicpathology.com

To create a finely tuned ML algorithm with the intention
for clinical or research deployment, a true programming
platform, which can be open source or proprietary, is probably
needed. Python and R are good examples of open-source
programming languages where ML libraries are well devel-
oped and supported.’®2° Python emphasizes code readability
and is a true objective-oriented programming language with
capabilities extending well beyond ML applications.!® R has
been the preferred programming language for data scientists.2
Both options now have deployment options as web applications.
Python, being a general-purpose programming language, has the
advantage of the ease of integration with other languages which
allows more flexible deployment.®

With a long-track record of committed users from
academia and industry, MATLAB has been one of the well-
maintained heavyweight data analytics platforms. Licenses can
be expensive for independent users but well-funded academic and
industrial institutions usually make them available to researchers.
However, being a proprietary platform, the end-users trade a
polished development experience for an open-source ecosystem.

NONIMAGING RELATED MACHINE LEARNING
TECHNOLOGIES

Next-generation Sequencing and Artificial
Intelligence

In addition to imaging applications, specialized ML
technologies have been developed and deployed to aid pre-
cision medicine by providing better tools for next-generation

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.
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sequencing (NGS). The highly multiplexed nature of NGS
has helped to alleviate some of the problems associated with
traditional Sanger sequencing, namely cost, reaction time
and sensitivity to low-frequency variants.?1-?> NGS methods
generate a massive amount of data per sequencing run and
manual identification of pathologically and clinical sig-
nificant mutations is not feasible and must be accomplished
by machine assistance. On the basis of the iterative nature of
these processes most laboratories have adapted a data pipeline
style of workflow.2

A typical data pipeline consists of sequence generation,
alignment, processing, and interpretation, producing mostly
standardized structured files at each step (Fig. 7). Sequence
generation produces the raw short sequences, which are then
aligned algorithmically to produce a sequence alignment
map or binary alignment map. Sequence processing takes
the aligned map files and makes variant calls by comparing
the aligned sequences to a reference genome, producing a
file called variant call format. Variant calling may produce
erroneous results based on the sample type, preparation,
sequencing platform, and errors in sequencing and
alignment.”* An additional error can occur from manual
curation of sequencing data, which can be required based on
the filters used and random biases in the sequencing
data.2>26 Sequence interpretation utilizes the variant call
format file and renders an interpretation, which is heavily
dependent on literature mining.?’

At the moment, NGS data pipeline have stand-
ardization and quality control issues and ML methods can
be potential solutions.?® ML-based variant calls can poten-
tially increase the performance and accuracy through better
usage of variables such as qualities of sequencing, align-
ment, and tumor, potentially increasing the use of inferior
quality samples. Google developed DeepVariant which
treats binary alignment map files like images and thus lev-
erages the deep learning technologies to significantly
improve performance.?’ Many variations of this system
are in development and high-quality reference databases

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

(eg, ClinVar, UniProt, gnomAD) are absolutely essential.
Several earlier tools for variant annotation and classification
such as PolyPen and SIFT failed to establish themselves
definitively in the clinical setting. The recent release of
American College of Medical Genetics (ACMG) standards
and guidelines for the interpretation of the sequence variants
has fostered another wave of development.?® Companies
like Fabric Genomics and Invitae have produced tools that
can classify variants based on ACMG guideline with rapid
turnaround time.3!2 Nonetheless, the lack of ground truth
data derived from protected health information repositories
has typically been a bottleneck in evaluating the accuracy of
Al applications for clinical decision making. Some institu-
tions are exploring new collaborative ventures with com-
panies like Sophia Genetics to overcome this limitation by
analyze patient data in a secure manner.>?

Artificial Intelligence in Natural Language
Processing

The recent media buzz led by IBM Watson has created an
mmpression that human or superhuman level of language proc-
essing and knowledge mastery has been achieved. Indeed since
the introduction of IBM Watson, ML enabled natural language
processing (NLP) and knowledge base has been claiming
medical board certification level of competency in China and
Britain with varying degree of success.**3> The advent of elec-
tronic health records (EHRSs) to store clinical information in
structured and unstructured forms has created the infrastructure
and the potential use case scenarios for optimizing of clinical
decision trees and biomedical research.®

It is important to recognize that computerized process-
ing of clinical text has been in practice since computers were
first used in clinical settings. Many earlier attempts aimed at
creating rules to structure clinical text information rather
than designing a system to accommodate traditional doc-
umentation style. The International Statistical Classification
of Diseases and Related Health Problems (ICD) and Sys-
tematized Nomenclature of Medicine (SNOMED) were all
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attempts to produce structured and granular clinical text so
they can be more easily consumed by earlier computer sys-
tems with limited capabilities. In general, anatomic pathology
reporting is slowly mirroring the clinical workflow which has
extensively adapted the use of checkboxes and structured
templates. The College of American Pathologist is advocat-
ing for electronic Cancer Checklists (CAP eCC) that can
provide template-based structured input to produce
standardized cancer synoptic reports. Bethesda classification
systems for reporting cervical cytology, thyroid cytopathol-
ogy, the Milan system for reporting salivary gland cytopa-
thology, and the Paris system for reporting urinary cytology
are similar reforms to create more structure and granularity
that will ultimately make NLP easier. While pathology
reports are still predominately in free-text form, it is possible
to utilize context-free grammar to parse them and extract
meaningful information. Nonetheless, routine pathology and
laboratory workflow continues to produce large amounts of
unstructured material that requires more robust NLP to
translate into clinical management and research information.

The most common method for text mining for pathology
reports utilizes Structured Query Language, a language designed
to manage data in a relational database; the relational database is
the most common type of database for a laboratory information
system. As a fully-featured programming language designed to
query information, one can create information extraction pipe-
lines using Structured Query Language alone.’” Such a pipeline
would require well-engineered business logic or rules to com-
pensate for errors in spelling and grammar as well as lingual
variations. A Grammar-based parsing approach can be used on
well-structured and consistent data.

The recent attempts by the technology companies to
gain entry into medicine through the NLP pathway is ini-
tiating the shift from rule-based algorithms to ML or sta-
tistics-based methods. Analogous to the revolution in digital
image analysis, the shift is reducing the need for domain
knowledge. The centerpiece of the technical advances from
IBM Watson and Amazon Comprehend are the abilities of
the algorithm to extract features such as words and rela-
tionships between words to classify a blob of text, a process
called text classification. Pathology is in the very early phase
of investigating the use of ML-based NLP methods, but
potential applications are numerous. For instance a NLP
pipeline for medical billing can be constructed by parsing
the necessary pathology reports from a laboratory infor-
mation system, which can be mapped to Current Procedural
Terminology (CPT) codes with SNOMED and perhaps
further enhanced with ML-based methods to facilitate
automated billing.3® Clinical and epidemiological studies
that require text mining can be implemented this way.>

Though the use of NLP in health care is yet to reach its full
potential, companies like Amazon Comprehend Medical and
Mendel Al are using their algorithms to connect patients with
relevant clinical trial information based on EHR data.***! The
advent of Al is facilitating increased interaction between patients,
pharmaceutical companies, hospitals, researchers, technology
companies, and insurers, and this may provide a potential sol-
ution for accessing EHR data in a regulated way.

FUTURE DIRECTIONS
While AI applications continue to improve, most of
them will continue to be in the narrow Al domain, focusing
on only a single task. The current Al tools can recognize
tumors and score grades, but none can do everything that a
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pathologist does while looking at a glass slide. We can look
at other industries to help guide our path forward. Self-
driving cars are materializing one component at a time; first,
we had the antilock braking system, then came cruise con-
trol, which then became adaptive cruise control, finally lane-
centering technologies that allowed the car to stay in the lane
without driver input. This shows perhaps strong general-purpose
Als are simply a collection of narrow Als working together.

At the time of writing, the tragic impact COVID-19 can be
felt in every corner of the globe. The digital transformation of
pathology, and the emphasis on working remotely, has been
further accelerated due to the need for social distancing measures.
The power of Al has also been felt in the pharmaceutical sector
where CNNs can predict protein-ligand interactions in addition to
repurposing treatment regimens based on synthetic predictions.*2
Precise prediction of the future is difficult, but it is safe to say this
trend will catalyze more development of Al applications for
pathology. Increased reliance on Al for clinical trials, digital
pathology, genomics and synthetic biology reveals the various
areas for growth in health care. Analogous to the building of
more roads leading to more cars, the increased usage of digital
pathology will lead to more Al digital pathology applications.

CONCLUSIONS

Al technologies has been powering pathology and
laboratory medicine since computers were introduced into
the workflow. Early methods relied on classic computing but
few gained traction. Early image analysis tools relied on
feature engineering methods and some of them thrived in
clinical and research settings. ML-powered Al technologies
are now dominating the field due to the method’s improved
performance and flexibility. Application of Al technologies
in digital image analysis, NGS, and NLP will continue to
evolve in the foreseeable future.
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